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ABSTRACT: 
The paper analyses inverse problems for stochastic heat conduction with moving boundaries due to phase 
change. In the case of deterministic analysis, the direct problem of such an issue is known as the Stefan prob-
lem. The inverse problems may concern the material parameters such as latent heat, thermal conductivity, 
specific heat which can be assumed to be random as well as stochastic characteristics of the process such as 
an expression for covariance. 
 
 
KEYWORDS: 
stochastic heat conduction; moving boundaries; inverse problem 
 

1. Introduction 

Inverse problems in mathematical physics are a class of problems focused on determining 
unknown causes based on observed effects, rather than predicting effects from known causes [1]. 
Stochastic direct heat conduction problems are analyzed, for instance, in [2-6]. In the context of 
heat conduction, inverse problems are crucial in applications where the thermal properties, 
sources, or boundary dynamics are unknown and must be deduced from observed temperature 
data [7-9].  

The study of stochastic heat conduction with moving boundaries introduces additional layers 
of complexity [10]. Here, the goal is to understand heat transfer within a domain where bounda-
ries may change over time, as seen in processes such as melting, growth of materials, or even 
dynamic biological environments. Stochastic elements further complicate the model by introduc-
ing random fluctuations – this is often necessary for capturing realistic conditions influenced  
by uncertain or fluctuating environmental factors.  

This article explores inverse problems related to such stochastic heat conduction systems 
with moving boundaries. We aim to outline methods for identifying key parameters and bound-
ary conditions in scenarios where both randomness and boundary dynamics are present.  
Approaches to this topic have broad implications, from industrial applications like metal cooling 
and thermal insulation to fields such as biomedical engineering, where heat conduction in  
dynamically changing tissues can provide valuable diagnostic information. This article presents 
recent advancements, methodologies, and challenges in tackling these inverse problems, empha-
sizing how these approaches can enhance predictive accuracy and practical applicability in  
complex, real-world systems. 
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2. Substantive justification  

The study of inverse problems in stochastic heat conduction with moving boundaries  
addresses a complex but essential issue in understanding and predicting heat behavior in  
dynamic, uncertain environments. Traditional heat conduction problems, governed by determin-
istic partial differential equations, assume fixed boundaries and known properties. However,  
in many practical applications, boundaries evolve over time, and randomness plays a significant 
role in material properties, environmental conditions, or internal sources, challenging standard 
modeling and solution methods. 

At the heart of this issue is the need to extract unknown parameters – such as thermal diffu-
sivity, heat sources, or boundary positions by working backward from observed temperature 
data. This process becomes exponentially more difficult when boundaries move, as in cases of 
melting or material expansion, and when the system is subject to random fluctuations. These  
conditions require a departure from conventional inverse problem-solving techniques. Instead, 
they necessitate advanced methods like stochastic partial differential equations (SPDEs), which 
incorporate probabilistic elements into the heat conduction model. SPDEs allow for a more real-
istic representation of how heat behaves under random influences and with shifting boundaries, 
but they are computationally intensive and complex to solve. 

Another layer of difficulty lies in handling the uncertainties introduced by both the stochastic 
nature of the model and the moving boundaries, which are often highly nonlinear. For example, 
in processes where phase changes occur, such as melting, the boundary movement itself is influ-
enced by temperature, creating a feedback loop that complicates analysis. This feedback effect 
means that any changes in estimated parameters or boundary conditions can have a ripple effect, 
influencing future states of the system in unpredictable ways. 

From an applications standpoint, solving these inverse problems accurately has substantial 
implications. In industrial manufacturing, understanding and controlling heat in materials under-
going phase changes or expansions can improve quality and efficiency, as in casting and welding 
processes. In environmental studies, the ability to model ground temperature fluctuations with 
moving boundaries can inform predictions related to permafrost thawing or soil freezing. In bio-
medical engineering, accurately modeling tissue temperature with uncertain boundaries, such as 
in tumors with irregular shapes, can enhance the safety and precision of thermal therapies. 

Despite recent advances in theoretical and computational methods, challenges remain in 
achieving stable, reliable solutions to these inverse problems. Data acquisition is often noisy, 
which complicates the extraction of meaningful parameters. Furthermore, developing methods 
that are computationally efficient yet robust to uncertainties remains a key hurdle. As such,  
this field continues to push the boundaries of applied mathematics, spurring the development of 
novel techniques in statistical modeling, numerical analysis, and machine learning to meet these 
challenges and extend the practical reach of stochastic heat conduction models with dynamic 
boundaries. 

3. Problem formulation 

b(x,ω) with ω  �  is a random field at point x defined in a probability space (�, Z, P). �  is  

the set of outcomes, Z is the -algebra of events and P is a probability measure.  
Γt is the interface between the two phases at time t with temperature T = T(x,t,ω) and ν is  

the unit outward normal vector to the second (solid) phase. The Stefan condition determines the 
evolution of the surface Γ by giving an expression for velocity of the free surface in the direction 
ν with the latent heat L = L(x,t,ω). 

The energy balance equation in regions considered (liquid and solid) is 

 C(x,ω,T)∂t T + ∇q(x,t,ω) + Q = 0 (1) 
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where C is the function of specific heat and density, q is the heat flux and Q is the volumetric  
heat flux. 

The equation of Fourier is  

 q(x,t,ω) = –k(x,ω,T) ∇T(x,t,ω) (2) 

where k(x,ω,T) is the thermal conductivity.  
In the approach the phase change is modeled by a variant of the enthalpy method  

 C(x,ω,T) = dH/dT (3) 

where H = H(x,ω,T) is the enthalpy. 
The random field b(x) can be approximated by finite elements with shape functions Ni  

that gives 
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The equation (1) can be transformed to a matrix equation. By the use of the finite element 
method we get the equation for the temperature vector T = T(b,t) with elements TI of tempera-
tures in nodes as  

  ɺ( ) ( , ) ( ) ( , ) ( , )t t tC b T b K b T b F b  (4) 

where C is the heat capacity matrix, K is the thermal conductivity matrix, F is the thermal load 
vector and dot indicates the temperature rates. 

The nonlinear stochastic equation of the form is  
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where   (0, ) is the so-called small parameter. Assume that in time interval I the process has 
continuous realizations with probability equals to 1. 

If f is analytic then with probability equals to 1 the solution can be expressed in the form of 
series of random processes 
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uniformly convergent on T with probability 1. For sufficiently small  the difference between  
solutions is not only small, but can be estimated with any accuracy. 

The formula for expected values for temperature in node I for two terms is 
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where p is any random parameter i.e. thermal conductivity, specific heat, enthalpy, etc. 
And the expression for covariance of temperatures is  

  JI
I J

dTdT
Cov(T ,T ) Cov(p ,p )

dp dp α βα β  (8) 

where m is the number of nodes, I, J = 1,2,..., m, α, β = 1,2,..., m. 
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The following expression for the covariance is assumed to be 

   Cov p ,pα β  
 
  
 
 

x x
exp

α βλ  (9) 

where  is the correlation length and λ is the value of diagonal of covariance. 
In solution of the inverse problem concerning the material characteristics the Newmark 

method can be used to compute equations in time. A conjugate gradient method approach can be 
adopted for the solution.  

4. Conclusion 

The article focuses on the challenging task of determining unknown parameters or boundary 
behaviors in heat conduction models that feature both randomness and dynamically changing 
boundaries. These types of problems are commonly encountered in systems where the material 
interface changes over time, such as in melting or freezing processes, material growth, and  
biomedical applications involving tissue dynamics. 

In particular, the article delves into inverse problem techniques that allow researchers to  
estimate thermal properties, source terms, or boundary positions based on observed tempera-
ture data. The inclusion of stochastic elements adds realism to these models, as real-world  
systems often experience random fluctuations due to environmental or material uncertainties. 
This complexity requires specialized mathematical and computational tools, such as stochastic 
partial differential equations and probabilistic modeling approaches, to accurately capture both 
the randomness and the moving boundary dynamics. 

The article reviews recent methods and theoretical advancements in this field, discusses  
the practical implications of solving such inverse problems, and highlights potential applications. 
These approaches have promising applications in industrial processes, environmental monitor-
ing, and biomedical engineering, where accurate temperature modeling can provide insights  
into material properties, predict system behaviors, and support decision-making in dynamic  
environments. 
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Problemy odwrotne dla stochastycznego przewodzenia ciepła  
z ruchomymi granicami 

STRESZCZENIE: 
Przeanalizowano problemy odwrotne dla stochastycznego przewodzenia ciepła z ruchomymi granicami  
ze względu na zmianę fazy. W przypadku analizy deterministycznej bezpośredni problem takiego zagadnie-
nia znany jest jako problem Stefana. Problemy odwrotne mogą dotyczyć parametrów materiału, takich jak 
ciepło utajone, przewodnictwo cieplne, ciepło właściwe, które można uznać za losowe, a także stochastycz-
nych charakterystyk procesu, takich jak wyrażenie na kowariancję. 
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