
 
Zeszyty Naukowe Politechniki Częstochowskiej nr 30 (2024), 23-28 

DOI: 10.17512/znb.2024.1.03 

 

Formulation of the critical lateral buckling moment of  

a steel I-beam 
 
Anna Derlatka1, Shan Gao2 
 
 
ABSTRACT: 
The paper presents an analysis of the method of formulation of the critical lateral moment during buckling of 
an I-beam. Three methods of determining the critical moment were considered: commonly known analytical 
formulas, the Robot Structural Analysis Professional 2024 program and the finite element method imple-
mented in the ADINA program. The subject of the analysis was the steel beam with a cross-section of IPE 200. 
Two simply supported beams were considered. The first one was loaded with a concentrated force and  
the second one was loaded with an evenly distributed load. 
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1. Introduction 

Lateral torsional buckling may occur in an unrestrained beam. The beam is considered to be 
unrestrained when its compression flange is free to displace laterally and rotate. When an applied 
load causes both lateral displacement and twisting of a member, lateral torsional buckling has 
occurred [1]. Cross-sections for which the moments of inertia differ significantly Iy >> Iz and have 
relatively low torsional stiffness, when loaded in a plane with greater bending stiffness, are bent 
relative to the weaker axis, this is the loss of the flat form of bending, which is accompanied by 
twisting relative to the longitudinal axis [2]. 

The bending beam may lose the general or local stability of the web or compression flange 
depending on the type and method of loading, the shape and geometric features of the cross- 
-section, length, support conditions or indirect elastic constraints. 

Lateral torsional buckling, where the behaviour changes from mainly in-plane bending to 
combined lateral deflection and twisting, is one of the most important stability problems and may 
often be a controlling factor in steel beam design. Therefore, various design standards and codes 
recommend methods in order to calculate lateral torsional buckling of steel members.  

In paper [3], the explanation of the elastic critical moment Mcr for doubly symmetric cross- 
-sections applied in Eurocode 3 [4] was presented. The explanation of the elastic critical moment 
Mcr was also presented in the Access Steel guide [5]. A comparison of the critical moment deter-
mined using the formulas and the experimental results was presented in [1]. The works [6, 7] 
presented a comparison of the critical moment determined using formulas and the finite element 
method. As presented in [7], critical moments estimated with formulas provided sufficient engineer- 
ing approximation when compared with the values obtained with the FEM software. However, 
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authors of paper [6] emphasize that the analytical calculation path can only be applied to systems 
of low complexity and the use of FEM has a significant advantage.  

2. Materials and methods 

The aim of the study was an analysis of the method of formulation the critical lateral moment 
during buckling of an I-beam. Three methods of determining the critical bending moment were 
considered: commonly known analytical formulas, the Robot Structural Analysis Professional 
program and the finite element method implemented in the ADINA program. 

The subject of the research was the steel beam with the cross-section of IPE 200 made of S235 
steel grade [8]. Two simply supported beams were considered. The first one was loaded with  
a concentrated force and the second one was loaded with an evenly distributed load.  
 

 

Fig. 1. Analysed beams: a) loaded with concentrated force, b) loaded with evenly  
distributed load, c) cross-section shape 

2.1. Calculations based on formula 

The calculations were performed based on the formula dedicated for the beam with a com-
mon case of normal support conditions at the ends (fork supports) [5], as follows: 

��� = �� ��	
��� �
�
� + ���
���	
� + (����)� − ����� (1)

where: 
E is the Young’s modulus, 
G is the shear modulus, 
Iz is the second moment of area about the weak axis, 
It is the torsion constant, 
I is the warping constant, 
L is the beam length between points which have lateral resistant, 
zg is the distance between the point of load application and the shear centre, 
C1 and C2 are the coefficients depending on the load and end restraint conditions. 

In the calculation carried out for beam BL loaded by concentrated force C1 and C2 coefficients 
were assumed as 1.348 and 0.630 respectively, but for beam Bq loaded by distributed load,  
C1 and C2 coefficients were equal 1.127 and 0.454.  

The position of load on the upper flange were assumed in the calculations. 
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2.2. Robot Structural Analysis Professional 

In the Robot Structural Analysis Professional program, the beam was modelled using the 2D 

rod with the cross-section of IPE 200. The S235 steel grade was applied for the beam structure 

with Young’s modulus and shear modulus equal to 210 GPa and 81 GPa. As presented in Figure 2, 

the length of the beam was 6220 mm. 

 

 

Fig. 2. Beam analysed in Robot Structural Analysis Professional program 

Assumed boundary conditions reflected the freely supported beam. Both types of loads were 

applied to the beams. The position of load on the upper flange and general distribution on internal 

forces were assumed in the program options. 

2.3. Finite element method 

The numerical model was built with 8-node 3D-solid elements. The interaction between finite 

elements was achieved by connections of those common nodes. The boundary conditions were 

assumed at the surface cross-section at the ends of the beam (Fig. 3). Both types of loads were 

applied to the beams as loads equal to 1. 

 

 

Fig. 3. Beam analysed in ADINA program 

The bilinear-plastic material model with Young’s modulus of 210 GPa were used.  

3. Results 

The calculation of the critical lateral moment for the BL beam loaded with concentrated load 

was performed as follows: 

��� = 1.348 
� ∙ 210 GPa ∙ 142 cm��6220 mm��
∙ ��12980 cm�142 cm� + �6220 mm�� ∙ 81 GPa ∙ 7 cm�
� ∙ 210 GPa ∙ 142 cm� + �0.630 ∙ 100 mm�� − 0.630 ∙ 100 mm 
= 23.90 kNm 

  (2) 

The calculation of the critical lateral moment for the Bq beam loaded with an evenly distributed 

load was performed as follows: 
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��� = 1.127 �� ∙ 210 GPa ∙ 142 cm'(6220 mm)�
∙ �12980 cm*142 cm' + (6220 mm)� ∙ 81� Pa ∙ 7 cm'�� ∙ 210 GPa ∙ 142 cm' + (0.454 ∙ 100 mm)� − 0.454 ∙ 100 mm�
= 21.21 kNm 

  (3) 

The results of critical lateral bending moments obtained by the Robot Structural Analysis and 
ADINA programs were presented in Table 1. For both beams BL and Bq the loads corresponded 
to the critical lateral moment were also presented in Table 1. 

Additionally, the result of the buckling beam obtained in ADINA program was presented in 
Figure 4. It is easy to see, that on the whole length of the beam, the cross-section rotates around 
the X axis. Both under the concentrated and distributed load, the way of buckling of the beam  
was the same. 
 

 
Fig. 4. Beam under the buckling state 

Considering the results presented in Table 1, for the BL beam with concentrated load,  
the critical lateral moment obtained by the Robot Structural Analysis and ADINA are similar.  
The difference is only about 3 %. But the critical lateral moment calculated from the formula is 
equal to 23.90 kNm and it is about 57 % the value from the Robot Structural Analysis program. 

Considering the Bq beam with distributed load, the critical lateral moment obtained by the 
Robot Structural Analysis is equal to 29.21 kNm which is 69 % of results from the ADINA program 
(42.30 kNm). The critical lateral moment calculated from the formula is even smaller and is equal 
to 21.21 kNm. So, it is 73 % and 50 % of the value resulted from the Robot Structural Analysis  
and ADINA programs, respectively. 

Table 1 

Results of critical lateral bending moment and corresponded loads 

Beam 

Formula Robot Structural Analysis ADINA 

Critical moment 
[kNm] 

Load 
Critical moment 
[kNm] 

Load 
Critical moment 
[kNm] 

Load 

BL 23.90 15.37 kN 41.32 26.57 kN 42.30 27.20 kN 

Bq 21.21 4.39 kN/m 29.21 6.04 kN/m 42.30 8.75 kN/m 
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It is worth noting that the critical lateral bending moments obtained from the numerical  

simulations are the same for both beams, regardless of the type of load applied. Comparing the 

results from Robot Structural Analysis, the critical moment for the beam under the distributed 

load is 41 % less than the critical moment for the beam under the concentrated load. Comparing 

the results of calculations from the formula, the critical moment for the beam under the distrib-

uted load is 12 % less than critical moment for the beam under the concentrated load. 

The differences between the ways of formulating the critical lateral moment are visible  

and dependent on a few factors. 

4. Discussion 

Regardless of the type of load, the values of the critical lateral moment calculated by the  

formula are the smallest among the considered methods. This is due to the approximations  

used resulting from the following assumptions: relatively simple calculations and obtaining a safe 

result, i.e. with a lower value compared to the results from some experiments. At the same time, 

the formulas take into account the possibility of geometric and material imperfections, which are 

included in the values of the C1 and C2 coefficients. Formulas obtained through strict theoretical 

considerations work well for simple cases, but for components with more complicated support 

conditions and unusual bending moment distributions, standard formulas may turn out to be  

insufficient and the results obtained from them unreliable. 

The Robot Structural Analysis program uses the finite element method to determine internal 

forces. Robot Structural Analysis conducts further calculations in accordance with the formulas 

included in the Eurocode 3 standard. Therefore, in the analysed case, the C1 and C2 coefficients 

determined by the program were calculated based on the bending moment diagrams. Then Robot 

Structural Analysis used the coefficient values to calculate the critical moment according to  

formula (1). Thanks to this, the C1 and C2 coefficients were determined more precisely for specific 

cases, while the next stage was identical with calculations in accordance with the formulas. 

The ADINA program is fully based on the finite element method. Therefore, regardless of the 

method of loading the beam, the values of critical moments were identical. At the same time, these 

values were the largest among the analysed methods. The differences in the results obtained  

using simulation in relation to other methods resulted, among others, from differences between 

the values of the geometric characteristics of the cross-section. In a numerical model built from 

3D-solid elements, it is not possible to define cross-sectional characteristics, e.g. consistent with 

profile tables. At the same time, the difference in the critical moment obtained using numerical 

simulations and calculations using the Robot Structural Analysis program is caused by using the 

different finite elements and the different way of setting boundary conditions (to the points in 

the Robot Structural Analysis program and to the surfaces in the numerical model). It should also 

be added that the numerical simulations did not take into account geometric or material imper-

fections. Nevertheless, it is a reliable method for determining the critical lateral moment for  

complex structures with unusual geometries and uneven distribution of bending moment. 

Due to the discrepancy in the results obtained using the three methods, in the future the  

experimental tests determining the critical lateral buckling moment and comparison of its value 

with the calculation methods analysed in this paper are planning to perform. 

5. Conclusions 

– The values of critical lateral bending moment calculated by the formula are about 40 % less 

than results of numerical simulations. 

– Formulas for critical lateral moment obtained through theoretical considerations work well for 

simple cases, but for components with more complicated support conditions and an unusual 

bending moment, standard formulas may turn out to be insufficient. 
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– Numerical simulation is the reliable method for determining the critical lateral moment for 
complex structures with unusual geometries and uneven distribution of bending moment. 

– The Robot Structural Analysis program can be used to access the critical lateral moment,  
especially when simulating a complex civil engineering structure with Eurocode requirements, 
but the results are underestimated compared to calculations using totally FEM model. 
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Obliczenie krytycznego momentu zginającego stalowej belki dwuteowej 

STRESZCZENIE: 
Przedstawiono analizę sposobu obliczania momentu krytycznego przy zwichrzeniu belki dwuteowej. Rozwa-
żano trzy sposoby wyznaczania momentu krytycznego: powszechnie znane wzory analityczne, program  
Robot Structural Analysis Professional 2024 oraz metodę elementów skończonych zaimplementowaną  
w programie ADINA. Przedmiotem analizy była belka stalowa o przekroju IPE 200. Rozważano dwie belki 
swobodnie podparte. Pierwszą obciążono siłą skupioną, a drugą obciążono obciążeniem równomiernie  
rozłożonym. 
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