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Introduction

Transport phenomena in porous media have recently received growing attention
in light of the common usage of such media in various applications in the fields
of energy technology [1, 2].

The physics of moisture transfer in porous media are usually explained by dif-
fusion theory [3], capillary flow theory [4-7], and evaporation condensation theory
[5, 8]. In a present work the evaporation mechanism was assumed with concentra-
tion and pressure gradient terms, because for examples presented i.e. concrete
structure undergoing thermal loading this theory is generally accepted. Drying
experiments at elevated temperatures revealed high pore pressure as a consequence
of intensive water vaporization.

The measures pore pressure, determined under heating conditions, correspond
to the sum of saturated water vapor pressure and ambient air pressure. The conse-
quences of these phenomena are poroelastic and poroplastic stresses in porous
structures [9-17].

Problems of heat and mass transfer in porous bodies are considered usually by
deterministic theories. But many of these problems have stochastic character.

The literature on probabilistic methods in mechanics can be divided into two
parts i.e. using statistical and nonstatistical approaches [18-21]. Non-statistical
methods include for instance the stochastic finite element method [22, 23].

Stochastic methods can be an effective tool in solutions of heat and mass trans-
fer problems. As the name suggests, these methods combine two crucial method-
ologies developed to deal with problems of heat and mass transfer: analytical or
numerical analysis with the stochastic one.

The stochastic analysis in the broadest sense refers to the explicit treatment
of uncertainty in any quantity entering the corresponding deterministic analysis.
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The exact values of these quantities are usually unknown because they cannot be
precisely measured.

The stochastic approach to heat and mass transfer problems is important not
only because of random material parameters, but particularly because of boundary
problems appearing in these processes.

Existing uncertain variations in parameters may have significant effects on such
fundamental final characteristics, as temperature distributions, and they must
affect the final design. Useful analytical tools for performing analysis of element
with uncertain properties are provided by the theory of random fields, which is
an outgrowth of the probability theory.

This paper is limited to equations typical for heat and mass transfer. In analyzing
of stochastic behavior of porous bodies in heating processes systems of equations
are functions of random variables. The distinguishing feature of the stochastic
methods, which are based on the perturbation approach, is treating probabilistic
problems with deterministic computational techniques that take full advantage
of the mathematical properties of linear or even nonlinear operators.

This offers a specific treatment of heat and mass transfer problems for which
we can use the probabilistic numerical techniques. In the paper the so-called
the stochastic finite difference method is applied which is a modification of
the stochastic finite elements mentioned above. A system of partial differential
equations is obtained and solved for first two probabilistic moments of the random
temperature field.

1. Discretized random variable

Assume that the domain of interest V is discretized. The basic idea of the mean-
based, second-order, second-moment analysis in a stochastic discretized problem is
to expand via Taylor series all the vector and matrix stochastic field variables
about the mean values of random variables b(x), to retain only up to second-order
terms and to use in the analysis only the first two statistical moments. Equations
for the expectations and cross-covariances (autocovariances) of the nodal tempera-
tures can be obtained in terms of the nodal temperature derivatives with respect
to the random variables.

In the stochastic numerical approach the fields b(x) have to be represented
by a set of basic random variables. To discretize b(x) by expressing them in terms
of point values the following approximation is used

b(x) = N5 (x) by (M

where Ng are shape functions and by is the matrix of random parameter nodal

values.
The same shape functions as in Eq. (1) as used for temperature approximation

T(x)=Nz(x) Ty )
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where Ty is the matrix of nodal temperatures. The matrix T; can be related to
the nodal temperature vector T, by the transformation

T; =Bg, T, (3)
which substituted into Eq. (2) gives
T(x)=N,(x)T, 4
provided we denote
N, (x) = Nz (x)Bg, &)

A vector of nodal random variables b, related to the matrix by is introduced by
an appropriate transformation

b.=B_b (6)

o FapTp

Then Eq. (1) is
b(x) =Ngz(x) Bg,b, =N, (x)b, @)

which may be regarded as the random variable counterpart of the temperature
expansion Eq. (2)

By Eq. (1)
E(b(x))=b"(x) =N, (x)b" (8)
Cov(b, (x).b,(%)) =S} = N, (x) Ny, (x)S{° ©)
and
Ab(x)=N,(x)Ab, (10)
where
Ab,=b,—b, (11)

and bg and S° stand for the mean value vector and the covariance matrix of
the nodal random variable vector b, respectively.

2. Equations of heat and mass transfer in porous body

Problems of heat and mass transfer in porous material are described by the
following equations.
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— Conservation equations for mass
The conservation equations for mass can be written as

b =-Vlpw;)+ W, (12)

where p; is the density of species i, w; is the velocity of species i and W, is the pro-
duction rate of species i. Since no movement of the liquid (subscript c) is assumed
w, = 0. Also, W = -W_, = -W_ (v = vapor, m = air-vapor mixture), since the rate
of liquid evaporation is the same as the rate of vapor production, and since the air
does not change phase, the rate of mixture production equals the rate of vapor
production. The above equation thus simplifies to

P =—W, (13)
The continuity equation for the air (subscript a) takes the form
Pa =—V(p,w,) (14)
and for the vapor,
Py =-Vlpsw,)+ W, (15)
The conservation of gas phase mass gives
P ==V(puWn)+ W, (16)
Fick’s law allows the fluxes to be presented in the forms of equation (17) and (18):
Jo =Pa(We = Wi ) =—puDVpy, (17)

where pg; =p;/p,, is the mass fraction of species i with respect to the density

of the air-vapor mixture, and D is the diffusion coefficient for Fick’s law for
the air-vapor mixture; and

jv :pv(wv _Wm):_meVva (18)
Finally, we get the following species equations:
pm[?)a +memVpBa = V<mevaa)_ pBan (19)

and
pmﬁa + memVpBa = V(mevaa)_ pBan (20)

— Thermal equations
The fluxes of heat q and flowing gases r can be expressed as

q=-kVT 1)
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and

r=p,w,h, +p,w h,

(22)

where k is the thermal conductivity, and h; is the enthalpy of component i per unit

mass of component i. Equation (22) can be transformed to the form
r=p,Wyuhy, —pnDh,Vpg, —p,,Dh Vpg,
or
r=PuWnhy, +p,D(h, —h, )Vpy,
Assuming that
pe =ph, +ph, +p by, —PnRLO

where e is the thermal energy and R is the gas constant.
The thermal equations can be expressed as

pc, T =VkVT - Pm [wmcpm + D(cpv —Cpa )Vpﬁa ]VT

- (hv _ha)Wm _memT

with boundary conditions for T

B,(T)=T-T, =0 on§,
B, T):k%+qw =0 onS§,

B3(T):k(;—T+oc(T—Tf):0 on S,
n

(23)

(24)

(25)

(26)

where T, is the temperature of the body surface, T; is the fluid temperature,

and where c, is the specific heat at constant pressure.

— Darcy’s law
The velocity of the air-vapor mixture is given by

w,, =-k,Vp
where k|, is Darcy’s coefficient and p is the pressure.

— Thermodynamic relations

27)

Assuming that the vapor and air are ideal gases we have the following relations:
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-- Ideal gas equation for the vapor

pyV, =p,R,T (28)

where V; =p;/p,i represents the volume occupied by component i per unit total
volume;
and

-- Ideal gas equation for the air

p.V, =p.R,T (29)

— Clausius-Clapeyron equation
Since the liquid and vapor are assumed to be in equilibrium,

pv = psat (T) (3 0)

in the presence of liquid water. An analytic expression for pg, is

_ A
psat(T):CT (B/RV)eXp(_R_VTj (31)

— State equation
Using the notations pg; and Vi, the state equation can be presented as

pv<¢ - vC): pmvaRvT = (1 - pBa )mevT (32)

and

pald— V)= puppR.T (33)

where V, =V, = ((I) —Vc) and ¢ is the porosity.
Combining the above equations we get

plo - V)= puR,T (34)
where
R, =pp Ry +PpaR, (35)

3. Numerical solution

The thermal equations (26) are of parabolic type and can be transformed
to matrix equation using any standard finite difference procedure. As the result
we get the matrix equation for temperature vector T with components T; of
temperatures in nodes of the finite difference mesh as
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CT+KT+F=0 (36)

where C is the heat capacity matrix, K is the thermal conductivity matrix and F
is the load vector. Stochastic equations of the problem are given by considering
matrix thermal equations (36) with all the variables C, K, F and T which are func-
tions of the discretized random variable vector b = b(x), where x is the coordinate
vector

C(b)T(b,t)+K(b)T(b,t)=F(b,t) (37)

The random function b(x) is approximated using shape functions N;(x) by

q

b(x)=>N;(x)b; =Nb (38)

i=1

where b; are nodal values of b(x), that is the values of b atx;, i=1,....q.
The mean value of b denoted by E(b) is expressed as

E(b)=>_NE(b) (39)

and the variance by
V(b)=a’E(b) (40)

where a is the coefficient of variation.

All the random functions are expanded about the mean value E(b) via a Taylor
series and only up to second-order terms are retained. For any small parameter y
we have

q

Tlb, )= B(T(0)+ 13 E(T, (0)ab, 22 D E(T, , (O)abab, @)

i=1 i,j=1

where Ab; represents the first-order variation of b; about E(b;) and for any
function g

E(g(x))=g(x.E(b))

E(g,bl)=§—§ 42)
62
E(gablbz ): K@ng

In a similar manner we can express C(b), K(b) and F(b,t) as
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C(b)=E(C)+ yzq: E(C,, )Ab,+ %ﬁ zq: E(Qmbj Jab,Ab, (43)
i=1 i=1
q 1 ) q
K(b)=EK)+ 7> E(K,, )Ab; + Y E(K)bibj Jab,Ab, (44)
i=1 i.j=1
q 1 ) q
F(b,t)=E(F)+y> E(F,, (t)Ab; + Y E(Ebibj Jab,Ab, (45)

i=1 i,j=1

Substitution of equations (41) and (43)-(45) into equation (37) and collecting
terms of order 1, y and y* yields the following equations for E(T(t)), E(T’bi (t)) and

E(T,,, (1)

zeroth order
E(C)E(T(t))+ B(K)E(T(t)) = E(F(1) (46)
first order
B, ©)+ BB, ©)-F(F,, (ET)0) @
where
E(Fl,bi (E(T).1))= E<F,bi (t)- (E(C,bi )E(T(t))+ E<K,bi )E(T(t))) (48)

second order

E(C)T,(0)+ E(K) T ()= B, (E(T).E(T,, 1) (49)

F,= Zq:{BE(F,bibj (t))} cov (b;,b j)}+

i,j=1

—121{ BlC 0, JEO)+ SEK  JET0)+ (50)

+E(C,, )E(Tbj (t))+ E(K, )E(I b (t))] Cov(b;. b, )}

and

'i}(t):;Zq: (Tbb )cOv(b b;) (51)
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vl b= Vo IVlols 1RG5, s, ) 2

)) 1s the autocorrelation.

and R(b(xi), b(xj
The definitions for the expectation and autocovariance of the temperature are
given by

E(T)= TT(b,t)f(b)db (53)

—o0

and

Cov(T', 1) = T(Ti BT )) (1= E(17) £ (b) db (54)

—o0

where f(b) is the joint probability density function. The second-order estimate
of the mean value of T is obtained from equation (53) to give

E(T)=T(E(b))+§{iE(T,bibj)Cov(bi,bj)} (55)

i,j=1

4. Numerical example - Heated concrete element
with random liquid contents

Consider the stochastic problem of temperature distribution in the process
of one-sided heating of concrete element with velocity of heating of surrounding
air equals to 1°C/sec. The length of concrete element is assumed as 0.0540 m.
The number of nodes in finite difference meshes is 18. Calculations proved that
the increase of number of nodes in element does not influence on accuracy of
results both for deterministic and stochastic problems. Therefore the results are
described for 18 -nodes mesh of finite differences.

The heat transfer coefficient on the boundary was assumed as 5.73491 J/sec m’
K and the coefficient of mass transfer on the boundary 0.00570734 kg/sec-m’, and
the shape coefficient for the boundary is taken as 0.9. The initial temperature of
element’s temperature is equal to 20°C. In presented model the liquid contents p; is
defined as the random variable nodes 1 to 17 of finite difference mesh. For outer
surface it is assumed the constant liquid contents equal to 0. The total number of
random variables appearing in the analysis is equal 17 p; = {p; 1,..., prmy m = 17.
For each node I the temperature T; is assumed as the random variable. The formula
for expected values for temperature is

A Cov (pza , sz) (56)
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and for covariance of temperatures

dT; dT,
dpi, dpig

COV(TI , TJ) = Cov(pla), p/B) (57)

where m is the number of nodes, I, J=1.2, ....,n, o, f=1,2, ..., m.

TABLE 1
Thermal parameters of concrete element used in the analysis
Diffusion Heat Heat
Thermal . Heat coefficient| capacity capacity Liquid | Tempera-
Node co.nc.iuc- Den51gy capacity fqr tl}e for constant | for constant Pressuzre density|  ture
tivity | [kg/m’] [/keK] Fick’s pressure pressure | [N/m~] ke/m’] (K]
[W/mK] law for air for vapor
[m%s] | [VkgK] | [J/kgK]
1 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
2 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
3 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
4 2. 2500. |{1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
5 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
6 2. 2500. |{1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
7 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 | 101325 | 15. | 293.15
8 2. 2500. |{1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
9 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
10 2. 2500. |{1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
11 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
12 2. 2500. |{1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
13 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
14 2. 2500. |{1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
15 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
16 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
17 2. 2500. |1274.2435| 2.3E-05 | 1004.832 | 1884.060 |101325.| 15. | 293.15
18 1. 2000. | 837.860 | 2.3E-05 | 1004.832 | 1884.060 [101325.| O. 293.15

It is assumed that the expected values, covariance and the variation coefficient are:
E[p;]1=p:°=1274.2435 J/kg'K

X, = x|

Cov(p/a) Pl ) =9-exp .

where 4 =10 is the correlation length, and A =0.01 is the value of diagonal of
covariance.
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The deviation of liquid contents is assumed 10%. The initial thermal parame-
ters of concrete element assumed for the numerical calculations are presented
in Table 1. Stochastic and deterministic results of temperature distributions in con-
crete element for heating time 800 sec are presented in Table 2. Covariance
of temperatures are given in Figure 1. Standard deviation for 10% of unreliability
in liquid contents is presented in Table 3.

TABLE 2

Stochastic and deterministic results of temperature distributions in concrete element
for heating time 800 sec and 10% of unreliability in liquid contents

Temperature [K] Temperature [K] o
Node Deterministic problem Stochastic problem Change [%]

1 341.9138 341.8625 .01500
2 342.3975 342.3461 .01502
3 343.8573 343.8050 .01521
4 346.3183 346.2633 .01586
5 349.8144 349.7544 01715
6 354.3601 354.2943 .01858
7 359.8887 359.8215 .01867
8 366.1686 366.1108 .01580
9 373.4136 373.3713 01131
10 395.9294 395.8561 .01851
11 433.0437 432.9629 .01868
12 477.4167 477.3520 .01356
13 530.5955 530.5552 .00760
14 593.8051 593.7845 .00346
15 668.1166 668.1082 .00126
16 754.5695 754.5670 .00033
17 854.1879 854.1876 .00003
18 967.9418 967.9418 .00000
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Fig. 1. Covariance of temperatures for 10% of unreliability in liquid contents
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TABLE 3
Standard deviation for temperature for 10% of unreliability in liquid contents
Node Standard deviation
1 00492905100
2 00592624400
3 01282427000
4 02582044000
5 04104498000
6 .05115911000
7 04570236000
8 01688382000
9 .00978916400
10 39609160000
11 43441180000
12 44777410000
13 42646260000
14 .38258700000
15 .32604370000
16 .26060460000
17 18692860000
18 .10542280000

Final remarks

The development of stochastic finite difference method for thermal analysis
in porous continua with random properties requires the unification of mechanics,
probability and numerical methods. Its is an attractive tool for computation of
thermal variables considering random changes in porous material and its boundary
conditions. An application of stochastic finite difference method to discretization
of the region with the heat flow equation in porous body is a convenient approach
for the model presented.
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Abstract

A stochastic finite difference approach based on stochastic finite elements is proposed for heat
and mass transfer modeling. Porous structure with random material properties is investigated.
The theoretical formulation of the problem is described. A system of partial differential equations
is obtained and solved for first two probabilistic moments of the random temperature field. Example
of stochastic thermal analysis in concrete structure with random material parameters are given.

Keywords: concrete, heat and mass transfer, uncertainty, perturbation method

Metoda stochastycznych réznic skorficzonych w problemach przeplywu
ciepfa i ruchu wilgoci w elemencie betonowym

Streszczenie

W artykule zastosowano metode stochastycznych réznic skonczonych do analizy problemow
przeplywu ciepla i ruchu wilgoci. Przedstawiono sformulowanie teoretyczne problemu. Badano
porowatg strukture z losowymi parametrami materialowymi. Do rozwigzania zagadnienia zastoso-
wano metodg¢ perturbacyjna.

Stowa kluczowe: beton, przeptyw ciepta i masy, losowos¢, metoda perturbacyjna



