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ON PROBLEMS OF HEAT AND MASS TRANSFER 

IN CONCRETE STRUCTURES 

Introduction 

Transport phenomena in porous media have recently received growing attention 

in light of the common usage of such media in various applications in the fields 

of energy technology [1, 2]. 

The physics of moisture transfer in porous media are usually explained by dif-

fusion theory [3], capillary flow theory [4-7], and evaporation condensation theory 

[5, 8]. In a present work the evaporation mechanism was assumed with concentra-

tion and pressure gradient terms, because for examples presented i.e. concrete 

structure undergoing thermal loading this theory is generally accepted. Drying 

experiments at elevated temperatures revealed high pore pressure as a consequence 

of intensive water vaporization. 

The measures pore pressure, determined under heating conditions, correspond 

to the sum of saturated water vapor pressure and ambient air pressure. The conse-

quences of these phenomena are poroelastic and poroplastic stresses in porous 

structures [9-17]. 

Problems of heat and mass transfer in porous bodies are considered usually by 

deterministic theories. But many of these problems have stochastic character. 

The literature on probabilistic methods in mechanics can be divided into two 

parts i.e. using statistical and nonstatistical approaches [18-21]. Non-statistical 

methods include for instance the stochastic finite element method [22, 23]. 

Stochastic methods can be an effective tool in solutions of heat and mass trans-

fer problems. As the name suggests, these methods combine two crucial method-

ologies developed to deal with problems of heat and mass transfer: analytical or 

numerical analysis with the stochastic one. 

The stochastic analysis in the broadest sense refers to the explicit treatment 

of uncertainty in any quantity entering the corresponding deterministic analysis. 
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The exact values of these quantities are usually unknown because they cannot be 

precisely measured. 

The stochastic approach to heat and mass transfer problems is important not 

only because of random material parameters, but particularly because of boundary 

problems appearing in these processes. 

Existing uncertain variations in parameters may have significant effects on such 

fundamental final characteristics, as temperature distributions, and they must 

affect the final design. Useful analytical tools for performing analysis of element 

with uncertain properties are provided by the theory of random fields, which is 

an outgrowth of the probability theory. 

This paper is limited to equations typical for heat and mass transfer. In analyzing 

of stochastic behavior of porous bodies in heating processes systems of equations 

are functions of random variables. The distinguishing feature of the stochastic 

methods, which are based on the perturbation approach, is treating probabilistic 

problems with deterministic computational techniques that take full advantage 

of the mathematical properties of linear or even nonlinear operators. 

This offers a specific treatment of heat and mass transfer problems for which 

we can use the probabilistic numerical techniques. In the paper the so-called 

the stochastic finite difference method is applied which is a modification of 

the stochastic finite elements mentioned above. A system of partial differential 

equations is obtained and solved for first two probabilistic moments of the random 

temperature field. 

1. Discretized random variable 

Assume that the domain of interest V is discretized. The basic idea of the mean-

based, second-order, second-moment analysis in a stochastic discretized problem is 

to expand via Taylor series all the vector and matrix stochastic field variables 

about the mean values of random variables b(x), to retain only up to second-order 

terms and to use in the analysis only the first two statistical moments. Equations 

for the expectations and cross-covariances (autocovariances) of the nodal tempera-

tures can be obtained in terms of the nodal temperature derivatives with respect 

to the random variables. 

In the stochastic numerical approach the fields b(x) have to be represented 

by a set of basic random variables. To discretize b(x) by expressing them in terms 

of point values the following approximation is used 

 
αα

= bxΝxb )()(  (1) 

where 
α

Ν  are shape functions and 
α
b  is the matrix of random parameter nodal 

values. 

The same shape functions as in Eq. (1) as used for temperature approximation 

 
αα

= TxΝxT )()(  (2) 
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where 
α
T  is the matrix of nodal temperatures. The matrix 

α
T  can be related to 

the nodal temperature vector Tα by the transformation 

 
αααα

= TBT  (3) 

which substituted into Eq. (2) gives 

 
αα

= TxΝxT )()(  (4) 

provided we denote 

 
αααα

= BxΝxΝ )()(  (5) 

A vector of nodal random variables bρ related to the matrix 
α
b  is introduced by 

an appropriate transformation 

 
ρραα

= bBb  (6) 

Then Eq. (1) is 

 
ρρρραα

== bxΝbBxΝxb )()()(  (7) 

which may be regarded as the random variable counterpart of the temperature 

expansion Eq. (2) 

By Eq. (1) 

 ( ) 00
bxΝxbxb )()()(E

ρ
==  (8) 

 ( ) ρσ

σρ
==

bsr

rs

bsr )S(S)(b),(bCov xN)x(Nxx  (9) 

and 

 
ρ

∆=∆ bxΝxb )()(
ρ  (10) 

where 

 0

ρρρ
−=∆ bbb  (11) 

and 
0

ρb  and ρσ

bS  stand for the mean value vector and the covariance matrix of 

the nodal random variable vector 
ρ
b , respectively. 

2. Equations of heat and mass transfer in porous body 

Problems of heat and mass transfer in porous material are described by the 

following equations. 
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– Conservation equations for mass 

The conservation equations for mass can be written as 

 ( )
iiii Ww +ρ−∇=ρ&  (12) 

where ρi is the density of species i, wi is the velocity of species i and Wi is the pro-

duction rate of species i. Since no movement of the liquid (subscript c) is assumed 

wc = 0. Also, W = –Wv = –Wm (v = vapor, m = air-vapor mixture), since the rate 

of liquid evaporation is the same as the rate of vapor production, and since the air 

does not change phase, the rate of mixture production equals the rate of vapor 

production. The above equation thus simplifies to 

 
mc
W−=ρ&  (13) 

The continuity equation for the air (subscript a) takes the form 

 ( )
aaa
wρ−∇=ρ&  (14) 

and for the vapor, 

 ( )
vvvv

Ww +ρ−∇=ρ&  (15) 

The conservation of gas phase mass gives 

 ( )
mmmm

Ww +ρ−∇=ρ&  (16) 

Fick’s law allows the fluxes to be presented in the forms of equation (17) and (18): 

 ( )
ammaaa

Dwwj βρ∇ρ−=−ρ=  (17) 

where mii /ρρ=ρβ  is the mass fraction of species i with respect to the density 

of the air-vapor mixture, and D is the diffusion coefficient for Fick’s law for 

the air-vapor mixture; and 

 ( )
vmmvvv

Dwwj βρ∇ρ−=−ρ=  (18) 

Finally, we get the following species equations: 

 ( )
maamammam

WDw ββββ
ρ−ρ∇ρ∇=ρ∇ρ+ρ  (19) 

and 

 ( )
maamammam

WDw ββββ ρ−ρ∇ρ∇=ρ∇ρ+ρ  (20) 

– Thermal equations 

The fluxes of heat q and flowing gases r can be expressed as 

 Tkq ∇−=  (21) 
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and 

 
vvvaaa

hwhwr ρ+ρ=  (22) 

where k is the thermal conductivity, and hi is the enthalpy of component i per unit 

mass of component i. Equation (22) can be transformed to the form 

 
vvmaammmm

DhDhhwr ββ ρ∇ρ−ρ∇ρ−ρ=  (23) 

or 

 ( )
aavmmmm

hhDhwr βρ∇−ρ+ρ=  (24) 

Assuming that 

 θρ−ρ+ρ+ρ=ρ
mmmmccss

Rhhhe  (25) 

where e is the thermal energy and R is the gas constant. 

The thermal equations can be expressed as  

 

( )[ ]

( ) 







ρ−−−

∇ρ∇−+ρ−∇∇=ρ β

⋅

.

mmav

apapvpmmmp

TRWhh

TccDcwTkTc

m

 (26) 

with boundary conditions for T 

 ( )
1w1 Son0TTTB =−=  

 ( )
2w2 Son0q

n

T
kTB =+
∂

∂
=  

 ( ) ( )
3f3 Son0TT

n

T
kTB =−α+
∂

∂
=  

where 
w
T  is the temperature of the body surface, 

fT  is the fluid temperature, 

and where cp is the specific heat at constant pressure. 

– Darcy’s law 

The velocity of the air-vapor mixture is given by 

 pkw
Dm
∇−=  (27) 

where
D
k  is Darcy’s coefficient and p is the pressure. 

– Thermodynamic relations 

Assuming that the vapor and air are ideal gases we have the following relations: 
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-- Ideal gas equation for the vapor 

 TRVp
vvvv

ρ=  (28) 

where Vi i i= ρ ρ
α

/  represents the volume occupied by component i per unit total 

volume; 

and 

-- Ideal gas equation for the air 

 TRVp
aaaa

ρ=  (29) 

– Clausius-Clapeyron equation 

Since the liquid and vapor are assumed to be in equilibrium, 

 ( )Tpp
satv

=  (30) 

in the presence of liquid water. An analytic expression for 
sat

p  is 

 ( ) ( )








−= −

TR

A
CTTp

v

R/B

sat
v exp  (31) 

– State equation 

Using the notations iβρ  and iV , the state equation can be presented as 

 ( ) ( ) TR1TRVp
vmavvmcv

ρρ−=ρρ=−φ ββ  (32) 

and 

 ( ) TRVp
aamca βρρ=−φ  (33) 

where ( )cav VVV −φ==  and φ is the porosity. 

Combining the above equations we get  

 ( ) TRVp
mmc ρ=−φ  (34) 

where 

 
aavvm
RRR ββ ρ+ρ=  (35) 

3. Numerical solution 

The thermal equations (26) are of parabolic type and can be transformed 

to matrix equation using any standard finite difference procedure. As the result 

we get the matrix equation for temperature vector T with components TI of 

temperatures in nodes of the finite difference mesh as 



On problems of heat and mass transfer in concrete structures 

 

177

 0=++ FKTTC &  (36) 

where C is the heat capacity matrix, K is the thermal conductivity matrix and F 

is the load vector. Stochastic equations of the problem are given by considering 

matrix thermal equations (36) with all the variables C, K, F and T which are func-

tions of the discretized random variable vector b = b(x), where x is the coordinate 

vector 

 ( ) ( ) ( ) ( ) ( )t,t,t, bFbTbbTbC =+K&  (37) 

The random function b(x) is approximated using shape functions Ni(x) by 

 ( ) ( )∑
=

==

q

1i

ii b NbxNb x  (38) 

where bi are nodal values of b(x), that is the values of b at xi, i = 1,...,q. 

The mean value of b denoted by E(b) is expressed as 

 ( ) ( )∑
=

=

q

1i

ii bENE b  (39) 

and the variance by 

 ( ) ( )22
EV bb α=  (40) 

where α is the coefficient of variation. 

All the random functions are expanded about the mean value E(b) via a Taylor 

series and only up to second-order terms are retained. For any small parameter γ 

we have 

 ( ) ( )( ) ( )( ) ( )( ) ji

q

1j,i

bb,
2

q

1i

ib, bbtE
2

1
btEtEt

jii
∆∆γ+∆γ+= ∑∑

==

TTTbT ,  (41) 

where 
ib∆  represents the first-order variation of bi about E(bi) and for any 

function g 

 ( )( ) ( )( )bx Ex,ggE =  

 ( )
1

b,
b

g
gE
1

∂

∂
=  (42) 

 ( )
21

2

bb,
bb

g
gE

21
∂∂

∂
=  

In a similar manner we can express C(b), K(b) and F(b,t) as 
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 ( ) ( ) ( ) ( ) ji

q

1j,i

bb,
2

i

q

1i

b, bbE
2

1
bEE

jii
∆∆γ+∆γ+= ∑∑

==

CCCbC  (43) 

 ( ) ( ) ( ) ( ) ji

q

1j,i

bb,
2

i

q

1i

b, bbE
2

1
bEE

jii
∆∆γ+∆γ+= ∑∑

==

KKKbK  (44) 

 ( ) ( ) ( )( ) ( ) ji

q

1j,i

bb,
2

i

q

1i

b, bbE
2

1
btEEt

jii
∆∆γ+∆γ+= ∑∑

==

FFFbF ,  (45) 

Substitution of equations (41) and (43)-(45) into equation (37) and collecting 

terms of order 1, γ and γ
2
 yields the following equations for E(T(t)), ( )( )tE

ib,
T  and 

( )( )tE
jibb,T  

zeroth order 

 ( ) ( )( ) ( ) ( )( ) ( )( )tEtEEtEE FTKTC =+
&  (46) 

first order 

 ( ) ( )( ) ( ) ( )( ) ( )( )( )tEEtEEtEE
iii b,1b,b, ,TFTKTC =+

&  (47) 

where 

 ( )( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )tEEtEEtEtEE
iiii b,b,b,b,1 TKTCFTF +−=

&,  (48) 

second order 

 ( ) ( ) ( ) ( ) ( ) ( )( )tE,EˆtˆEtˆE
ib,222 ,TTFTKTC =+

&
 (49) 

 

( )( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )] ( )}jib,b,b,b,

q

1j,i

bb,bb,

q

1j,i

jibb,2

bbCovtEEtEE

tEE
2

1
tEE

2

1

bbE
2

1ˆ

jiji

jiji

ji

,

covt

TKTC

TKTC

FF

++

+




+



−

+














=

∑

∑

=

=

&

&

,

 (50) 

and 

 ( ) ( ) ( )ji

q

1j,i

bb,2 bbCovE
2

1
tˆ

ji
,∑

=

= TT  (51) 
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 ( ) ( )( ) ( )( )[ ] ( ) ( )( )ji
21

jiji xbxbxbVxbVbbCov ,, R=  (52) 

and ( ) ( )( )ji xb,xbR  is the autocorrelation. 

The definitions for the expectation and autocovariance of the temperature are 

given by 

 ( ) ( ) ( )∫
∞

∞−

= bbbTT dftE ,  (53) 

and 

 ( ) ( )( ) ( )( ) ( ) bb dfTETTETTTCov
jjiiji

∫
∞

∞−

−−=,  (54) 

where f(b) is the joint probability density function. The second-order estimate 

of the mean value of T is obtained from equation (53) to give 

 ( ) ( )( ) ( ) ( )












+= ∑
=

q

1j,i

jibb, bbCovE
2

1
EE

ji
,TbTT  (55) 

4. Numerical example - Heated concrete element 

with random liquid contents 

Consider the stochastic problem of temperature distribution in the process 

of one-sided heating of concrete element with velocity of heating of surrounding 

air equals to 1°C/sec. The length of concrete element is assumed as 0.0540 m. 

The number of nodes in finite difference meshes is 18. Calculations proved that 

the increase of number of nodes in element does not influence on accuracy of 

results both for deterministic and stochastic problems. Therefore the results are 

described for 18 -nodes mesh of finite differences. 

The heat transfer coefficient on the boundary was assumed as 5.73491 J/sec m
2
 

K and the coefficient of mass transfer on the boundary 0.00570734 kg/sec·m
2
, and 

the shape coefficient for the boundary is taken as 0.9. The initial temperature of 

element’s temperature is equal to 20°C. In presented model the liquid contents ρl is 

defined as the random variable nodes 1 to 17 of finite difference mesh. For outer 

surface it is assumed the constant liquid contents equal to 0. The total number of 

random variables appearing in the analysis is equal 17 ρl = {ρl 1,..., ρl m} m = 17. 

For each node I the temperature TI is assumed as the random variable. The formula 

for expected values for temperature is 

 [ ] ( ) ( )βα

βα

I
2m

1βα,

0
II ,Cov

dd

Td

2

1
TTE ll

ll

l ρρ
ρρ

∑+ρ=
=

 (56) 
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and for covariance of temperatures 

 ( ) ( )βα,

β

J

α

I
JI ,Cov

d

dT

d

dT
T, TCov ll

ll

ρρ
ρρ

=  (57) 

where m is the number of nodes, I, J = 1,2, ..., n, α, β = 1,2, ..., m. 

TABLE 1 

Thermal parameters of concrete element used in the analysis 

Node 

Thermal 
conduc-

tivity 
[W/m·K] 

Density 
[kg/m3] 

Heat 
capacity 
[J/kg·K] 

Diffusion 
coefficient 

for the 
Fick’s 

law 
[m2/s] 

Heat 
capacity 

for constant 
pressure 
for air 

[J/kg·K] 

Heat 
capacity 

for constant 
pressure 
for vapor 
[J/kg·K] 

Pressure 
[N/m2]  

Liquid 
density 
[kg/m3] 

Tempera- 
ture 
[K] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

2. 

1. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2500. 

2000. 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

1274.2435 

837.860 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05 

2.3E-05  

2.3E-05 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1004.832 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

1884.060 

101325. 

101325. 

101325. 

101325. 

101325. 

101325. 

101325 

101325. 

101325. 

101325. 

101325. 

101325. 

101325. 

101325. 

101325. 

101325. 

101325. 

101325. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

15. 

0. 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

293.15 

 
It is assumed that the expected values, covariance and the variation coefficient are: 

E [ρl ] = ρl
 o
 = 1274.2435 J/kg·K 

( )












 −
−⋅ϑ=ρρ

λ

xx
exp,Cov

βα

βα, ll  

where ϑ = 10 is the correlation length, and λ = 0.01 is the value of diagonal of 

covariance. 
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The deviation of liquid contents is assumed 10%. The initial thermal parame-

ters of concrete element assumed for the numerical calculations are presented 

in Table 1. Stochastic and deterministic results of temperature distributions in con-

crete element for heating time 800 sec are presented in Table 2. Covariance 

of temperatures are given in Figure 1. Standard deviation for 10% of unreliability 

in liquid contents is presented in Table 3. 

TABLE 2 

Stochastic and deterministic results of temperature distributions in concrete element 

for heating time 800 sec and 10% of unreliability in liquid contents 

Node 
Temperature [K] 

Deterministic problem 
Temperature [K] 

Stochastic problem 
Change [%] 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

341.9138 
342.3975 
343.8573 
346.3183 
349.8144 
354.3601 
359.8887 
366.1686 
373.4136 
395.9294 
433.0437 
477.4167 
530.5955 
593.8051 
668.1166 
754.5695 
854.1879 
967.9418 

341.8625 
342.3461 
343.8050 
346.2633 
349.7544 
354.2943 
359.8215 
366.1108 
373.3713 
395.8561 
432.9629 
477.3520 
530.5552 
593.7845 
668.1082 
754.5670 
854.1876 
967.9418 

.01500 

.01502 

.01521 

.01586 

.01715 

.01858 

.01867 

.01580 

.01131 

.01851 

.01868 

.01356 

.00760 

.00346 

.00126 

.00033 

.00003 

.00000 

 

 

Fig. 1. Covariance of temperatures for 10% of unreliability in  liquid contents 
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TABLE 3 

Standard deviation for temperature for 10% of unreliability in liquid contents 

Node Standard deviation 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

.00492905100 

.00592624400 

.01282427000 

.02582044000 

.04104498000 

.05115911000 

.04570236000 

.01688382000 

.00978916400 

.39609160000 

.43441180000 

.44777410000 

.42646260000 

.38258700000 

.32604370000 

.26060460000 

.18692860000 

.10542280000 

Final remarks 

The development of stochastic finite difference method for thermal analysis 

in porous continua with random properties requires the unification of mechanics, 

probability and numerical methods. Its is an attractive tool for computation of 

thermal variables considering random changes in porous material and its boundary 

conditions. An application of stochastic finite difference method to discretization 

of the region with the heat flow equation in porous body is a convenient approach 

for the model presented. 
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Abstract 

A stochastic finite difference approach based on stochastic finite elements is proposed for heat 
and mass transfer modeling. Porous structure with random material properties is investigated. 
The theoretical formulation of the problem is described. A system of partial differential equations 
is obtained and solved for first two probabilistic moments of the random temperature field. Example 
of stochastic thermal analysis in concrete structure with random material parameters are given. 
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Metoda stochastycznych różnic skończonych w problemach przepływu 

ciepła i ruchu wilgoci w elemencie betonowym 

Streszczenie 

W artykule zastosowano metodę stochastycznych różnic skończonych do analizy problemów 
przepływu ciepła i ruchu wilgoci. Przedstawiono sformułowanie teoretyczne problemu. Badano 
porowatą strukturę z losowymi parametrami materiałowymi. Do rozwiązania zagadnienia zastoso- 
wano metodę perturbacyjną. 

Słowa kluczowe: beton, przepływ ciepła i masy, losowość, metoda perturbacyjna 


